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Motivation and Objectives

• Current petascale architectures are composed of 
complex sub-systems

• Large scale computational models are being 
developed to study important scientific phenomenon

• Important to understand performance implications of 
petascale architectures on real world scientific 
applications

• Identify scalability challenges and performance 
bottlenecks

• Design optimization strategies to mitigate scalability 
issues and improve application performance
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Cray XT5 (JaguarPF)

Chip

AMD Opteron

2.6 GHz 6 cores

62.4 GF

Compute node

2 Chips

12 cores

124.8 GF

16 GB DDR2

Blade

4 Compute nodes

48 cores

499.2 GF

64 GB DDR2

Full System

4,672 blades in 200 cabinets

18,688 compute nodes

224,256 cores

2.3 PF

300 TB DDR2

• World’s fastest supercomputer

• 224,256 processor cores

• Peak performance of 

2.3 PetaFlop/sec
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IBM BlueGene/P (Intrepid)

Chip

PowerPC 450

850 MHz 4 cores

13.6 GF

Compute card

1 node

4 cores

13.6 GF

2GB DDR2

Node card

32 nodes

128 cores

435 GF

64GB DDR2

Rack

32 node-cards

1024 nodes

4096 cores

13.9 TF

2 TB DDR2

Full System

40 racks

40,960 compute nodes

163,840 cores

557.06 TF

80TB DDR2

• World’s 7th fastest machine

• 163,840 processor cores

• Peak performance of 

557.06 TeraFlop/sec
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PFLOTRAN: Architecture

• Large scale groundwater 
simulation code.

• Models multi-phase 
subsurface flow and multi 
component reactive 
transport in 3D porous 
media.

• Written in Fortran 90, uses 
PETSc and parallel HDF5.
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PFLOTRAN: Program Flow

• Parallelization using 3D 

domain decomposition 

• Finite-volume: 7-point stencil 

• Each processor is assigned 

a sub-domain of the problem

• Major stages

• Initialization stage

• Flow stage

• Transport stage

• Output stage
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Benchmark problems
• 1 billion DoF: 850*1000*80 cell coupled Flow and 

Transport problem. 68 million DoF for flow solve. 15 

chemical components amounting to  total of ~1 billion DoF 

for transport solve.

• 270 million DoF: 1350*2500*80 cell Flow-only version of 

the problem. 
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Initialization stage: Scaling

• Dominated by HDF5 Read I/O.
• Upgraded configurations of Lustre gave slightly better performance.
• But, overall BG/P outperforms XT5 by a huge margin.

9



Initialization stage: Analysis
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• All process participate in parallel read
• File open/close expensive at scale
• Individual read operations not efficient

Cray XT4 Cray XT5



Access Patterns: Default Method
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• Pattern-1 called 18 times and Pattern-2 called 2 
times



I/O Performance bottlenecks
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Spider 

• Object based parallel file system

• 3 major components

• Object Storage Servers (OSS)

• Meta Data Servers (MDS)

• File system clients

• All running jobs need to poll the MDS for file 
access
• Bottleneck at OST’s with higher processor count



Performance Optimization

• Implement two-phase I/O approach 

– Split the MPI global communicator into multiple sub 
communicators.

– The root process in each sub-communicator is 
responsible for performing the I/O operations for the 
entire group.

– Communication phase: Root gathers start indices 
and length

– I/O phase: Root perform reads and scatters data to 
group
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Our customized Access Patterns
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Impact of group size
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• Large group size implies fewer readers and 
better performance.
• 25X improvement over default method



Improved performance on XT5
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Improved performance on BG/P
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Output Stage: Scaling
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•Default uses HDF5 Collective I/O mode

Default



Write performance improvement
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Our modified approach

• 3X improvement over default method



Overall Improvement on XT5
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• 5X improvement for entire application



Overall Performance Analysis
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Initialization stage
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Flow stage
• Large number of linear 

iterations (31,167 –

35,667)

• Increase in iteration 

count with processor 

count because of 

preconditioner.

• Each iteration 

performs 4 

MPI_Allreduces

• Computation/Comm. 

Ratio is low for flow at 

higher processor count.
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• BG/P crosses XT5 after 16k. 



Transport stage

•Computation 

intensive because of 

reaction functions. 

• Similar scaling 

pattern but different 

single node 

performance.
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Overall scalability

Wall Clock Time Flow and Transport Stages
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Performance Analysis Tools 

• CrayPAT

– Binary instrumentation

– Captures MPI synchronization time

– Apprentice2 GUI

• Tuning and Analysis Utilities (TAU)

– Source level instrumentation

– Paraprof GUI

• Selective instrumentation of PFLOTRAN & 
PETSc routines to minimize profiling overhead
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Profiling Groups

• USER, MPI and 

MPI_SYNC groups

• Increase in MPI & 

MPI_SYNC group 

times with scale
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User Routines

• Dominant routines:

3 PETSc, 

2 native PFLOTRAN

• All 5 routines belong to 

Transport stage.
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User & MPI Routines
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•MPI_Allreduce & File operations are scalability bottlenecks



MPI_Allreduce call sites at 8k cores 

Message Size Count Call site

8 bytes 113,070 VecDot MPI, VecNorm
MPI etc.,

16 bytes 32,725 VecDotNorm2

> 4KB 943 MatZeroRows MPIBAIJ, 
MatZeroRows -
MPIAIJ, 
MatAssemblyBegin
MPIBAIJ,
MatAssemblyBegin
MPIAIJ
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Cray XT5 : Load Imbalance
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Cray XT5: Single node

PAPI_FP_OPS  for each core

at 8k cores
Percentage of Peak Performance
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Dominant routines on IBM BG/P

33

• Dominant routines differ from XT5 because BG/P has 
slower compute nodes



IBM BG/P: Load Imbalance 
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XT5 and BG/P: MPI_Allreduce
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Custom MPI_Allreduce benchmark
• Vector dot product

• No load imbalance 

• 150,000 MPI_Allreduce

• Different communication mechanisms
– Direct (MPI_Allreduce on Global Comm)

– Sub-comms (MPI_Reduce on intranode comm, 
MPI_Allreduce on internode comm, MPI_Bcast -
intranode)

– Asynchronous (MPI_Isend/Irecv within node, 
MPI_Allreduce on internode comm)

– Hybrid (OpenMP within node, MPI_Allreduce on 
global comm)
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XT5 and BG/P: Communication N/W
• BG/P

• 3D Torus

• Point-to-point communications

• 5.1 GB/s bidirectional b/w per node

• Global Collective

• Collectives, Reductions

• 5.1 GB/s bidirectional b/w per node

• Global Barrier

• Used for interrupts, barriers

• Cray XT5

• 3D Torus

• Both for point-to-point & collectives.

• 57.6 GB/s bidirectional  b/w per node
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MPI_Allreduce: XT5 vs. BG/P
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MPI_Allreduce : Different Methods
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Conclusions

• Architectural implications should be considered during 
application design 

– On Cray XT5: Leverage computation in order to reduce communication impact

• IBM BG/P is recommended for communication intensive 
applications

• Cray XT5 is better for computation intensive applications

• Significant system variability on Cray XT5, whereas BG/P delivers 
stable performance

• MPI_Allreduce has room for improvement on Cray XT5

• Parallel File Systems: Optimal readers/writers required at scale.
– Two phase I/O approach recommended.
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