
Tuning MPAS-A on SPR-HBM
Vamsi Sripathi, Andrey Ovsyannikov, Ruchira Sasanka

6/27/2023

Intel Confidential 2

MPAS

▪ Model for Prediction Across Scales (MPAS) is a collaborative
project for developing atmosphere, ocean and other earth-
system simulation components for use in climate, regional
climate and weather studies.

▪ Primary development partners are LANL (Los Alamos
National Laboratory) and NCAR (National Center for
Atmospheric Research)

▪ In this work, the “atmosphere” component (MPAS-A)
version 7.3 with 120km resolution problem set was
benchmarked on SPR-HBM

▪ SPR-HBM (B2 stepping) configured as SNC4, 1LM/HBM-only
(ortce-sprh4)

▪ Using IFORT + Pure MPI (112 MPI ranks pinned to 112-cores
(56c/socket))

https://mpas-dev.github.io/

Intel Confidential 3

Executive Summary

▪ Software optimizations deliver speed-ups of

• 1.23x on SPR-HBM

• 1.14x on SPR+DDR5 (2S Xeon 8480+, 56c/socket)

• 1.15x on ICX+DDR4 (2S 8360Y, 36c/socket)

▪ HW + Optimized SW speed-ups

• SPR + HBM / SPR + DDR5 = 1.9x (baseline: 1.75x)

• SPR + HBM / ICX + DDR4 = 3.28x (baseline: 3.06x)

• SPR + DDR5 / ICX + DDR4 = 1.73x (baseline: 1.75x)

▪ Next steps - contact MPAS developers and
discuss plans for upstreaming the code changes

Problem size

Performance on SPR-HBM (time, lower is better)
Speedup

Baseline Tuned

IFORT IFX IFORT IFX IFORT IFX

120km 39.03 44.73 31.3 37.47 1.25 1.19

60km 296.89 345.5 254.48 301.19 1.17 1.15

30km 1241.9 1399.78 1063.61 1228.73 1.17 1.14

Intel Confidential 4

MPAS-A Hotlist

▪ MPAS has support for native profiling framework, already has hooks around hot compute functions

• But does not include communication functions, the #2 most time-consuming component

• You cannot tune what you don’t measure – so, added timers around halo-exchange routines

▪ Overall, this is memory bandwidth bound application (VTune shows about 450 GB/s on 1-socket SPR-
HBM)

• Mostly read-heavy traffic with several address streams

Intel Confidential 5

Tuning Experiments Prolog

▪ Source code changes

• Compute functions: All the hot functions are in one single Fortran source file and one single module (7000
loc)

• Makes it hard to experiment with Compiler options, reading optimization reports and make code changes

• For easier prototyping, split each targeted hot function to individual .F file and use FPP for conditional
compilation

• This also enables to fully rewrite the Fortran source in “C” Compiler intrinsics for performance experiments

▪ Faster compilation

• A full build of MPAS-A takes 20 mins

• Compiling of modified source components leads to build-time of less than 2 mins

• Enables faster code<->run feedback loop

Intel Confidential 6

MPAS-A Results

▪ Optimizations deliver speed-up of 1.23x on
SPR-HBM

Function Name Baseline Optimized Speed-up

atm_compute_dyn_tend 9.80 9.00 1.09

halo_comms 6.65 4.35 1.53

atm_compute_solve_diagnostics 4.92 4.01 1.23

atm_recover_large_step_variables 4.85 4.11 1.18

atm_advance_acoustic_step 3.38 3.17 1.07

atm_advance_scalars 1.87 0.57 3.30

small_step_prep 1.32 1.19 1.11

atm_rk_dynamics_substep_finish 1.17 0.69 1.68

atm_divergence_damping_3d 1.09 0.95 1.15

atm_advance_scalars_mono 0.76 0.70 1.09

atm_compute_vert_imp_coefs 0.51 0.53 0.95

atm_rk_integration_setup 0.31 0.39 0.81

physics_get_tend 0.11 0.14 0.80

atm_compute_moist_coefficients 0.11 0.10 1.02

Total (time_integration) 36.83 29.90 1.23

Function Extent of modifications

No source code changes. All gains from Compiler flags

Moderate source code changes. Compiler Pragmas, assists
to compiler to generate better code

Heavy source code changes. Fusing loops to facilitate non-
temporal stores, AVX512 intrinsics

SPR-HBM

Intel Confidential 7

Halo_comms

▪ MPAS-A needs to exchange data among MPI
ranks between computations

▪ The data arrays are 2 or 3D double precision
values

▪ The data needs to be packed/unpacked from a n-
D array to 1-D array before/after the
communication

▪ The exchange is done using MPI Isend/Irecv pairs

▪ MPI Derived Datatype

• Derived data types allow you to specify non-
contiguous data in a convenient manner and to treat
it as though it was contiguous.

• MPI_Type_hvector() - Creates a vector (strided)
datatype with offset in bytes

• Does anyone have positive experience with usage of
MPI Derived data-types over explicit pack/unpack
mechanism?

Intel Confidential 8

Halo_comms: Packing/Unpacking

▪ Use IVDEP to tell the Compiler that there are no loop carried dependencies

▪ Use non-temporal stores through Pragmas (to avoid adverse impact on other parts of code)

▪ Having a complex ptr calculation in store address trips-off the Compiler, nudge it by storing the
constant part of the store address outside the loop

Pack + Isend() Unpack + Irecv()

Tuned

Baseline

Tuned

Baseline

▪ Applied to both 2D and 3D routines

▪ 1.53x speed-up for this code-block on SPR-HBM

Intel Confidential 9

atm_compute_solve_diagnostics

▪ The baseline version of this routine is about 200 loc
containing 12 loop blocks

▪ In the tuned version, 12 loops are collapsed into 4
blocks to facilitate the generation of non-temporal
stores and to minimize redundant loads

▪ The 4 loop blocks are packaged into C functions and
either use C + Compiler Pragams or C + AVX512
Compiler intrinsics

▪ As part of perf. tuning experiments, the 4 loop
blocks were written in C. These tunings can be
incorporated back into Fortran subroutines (through
Compiler Pragams) for easier acceptance into
upstream

▪ These deliver a speed-up of 1.23x

Intel Confidential 10

atm_compute_solve_diagnostics: sample loop blocks

Loop Block-1

Loop Block-2 Loop Block-3

Intel Confidential 11

atm_recover_large_step_variables

▪ Using non-temporal stores through Compiler
flag is almost always a bad idea unless if you
are dealing with STREAM benchmark like
kernels

▪ Selectively apply non-temporal stores by
identifying store buffers that need not be
read in calculations

▪ Intermediate results are stored in registers,
so it’s safe to force non-temporal stores even
if the store buffer is read by statements in
the loop body

▪ Improves performance by 1.18x

rho_p is stored in register, so it’s safe to
generate non-temporal stores

wwAvg needs to be read and then
updated, so using non-temporal stores
would be detrimental to perf.

Intel Confidential 12

Check for Compiler generated strided refs

▪ Nudge the Compiler to use memcpy() over multi-versioned strided loads/stores

▪ Either use “CONTIGOUS” keyword in pointer declarations (or) -assume
contiguous_assumed_shape -assume contiguous_pointer

Baseline Tuned

Intel Confidential 13

Misc

▪ Compiler is your friend - read its optimization reports of hot functions. Even better, look at generated
ASM (as the Compiler code-gen can also have perf. bugs)

▪ Know your loop bounds and guide the Compiler in targeting code optimizations (unrolling, unroll-jam)

▪ Align your arrays on 64-byte boundary (IFORT: -align array64byte)

▪ Important to pad the leading dimensions of multi-dimensional arrays to 64-byte boundary as well

▪ Surprised that MPAS does not use a memory manager, it would have provided a handy mechanism to
tweak memory alignment in a single wrapper function

▪ Use prefetches with care – understand which of the mem. references are coming from DRAM vs cache
hierarchy

14

Intel Confidential 15

Backup

Intel Confidential 16

Compiler Flags

▪ AWE_FFLAGS = -qopt-zmm-usage=high \
 -align array64byte \
 -assume contiguous_assumed_shape \
 -assume contiguous_pointer

▪ AWE_CPP_FLAGS = -DAWE_DMPAR \
 -DAWE_ATM_ADVANCE_SCALARS \
 -DAWE_ATM_COMPUTE_SOLVE_DIAGNOSTICS \
 -DAWE_ATM_RECOVER_LARGE_STEP_VARIABLES \
 -DAWE_ATM_RK_DYNAMICS_SUBSTEP_FINISH \
 -UAWE_SMALL_STEP_PREP \
 -UAWE_ATM_ADVANCE_ACOUSTIC_STEP \
 -UAWE_ATM_COMPUTE_DYN_TEND

	Slide 1: Tuning MPAS-A on SPR-HBM
	Slide 2: MPAS
	Slide 3: Executive Summary
	Slide 4: MPAS-A Hotlist
	Slide 5: Tuning Experiments Prolog
	Slide 6: MPAS-A Results
	Slide 7: Halo_comms
	Slide 8: Halo_comms: Packing/Unpacking
	Slide 9: atm_compute_solve_diagnostics
	Slide 10: atm_compute_solve_diagnostics: sample loop blocks
	Slide 11: atm_recover_large_step_variables
	Slide 12: Check for Compiler generated strided refs
	Slide 13: Misc
	Slide 14
	Slide 15: Backup
	Slide 16: Compiler Flags

